SKH St. Simon's Lui Ming Choi Secondary School Form 4 Mathematics Tiered Assignment

Name: \qquad Class: \qquad No.: \qquad

Part A: Basic Questions (40 marks)

1. Solve the following quadratic equations. (Leave your answers in surd form if necessary.)
(a) $3 x^{2}-x-5=0$
(b) $x(x+3)=2 x$
2. If the quadratic equation $x^{2}+4 x+k=0$ has two equal real roots, find the value of k.
3. It is given that $f(x)=\frac{3 x}{x+2}$, where $x \neq-2$. Find the values of
(a) $f(1)$,
(b) $f\left(-\frac{3}{2}\right)$.
4. Let $f(x)=x^{3}+6 x^{2}-x-30$.
(a) Show that $x-2$ is a factor of $f(x)$.
(b) Hence, factorize $f(x)$ completely.
5. Simplify the following expressions.
(a) $\frac{x^{2}-1}{x+2} \times \frac{3 x+6}{x+1}$
(b) $\frac{1}{x-5}+\frac{1}{x^{2}-3 x-10}$
6. Simplify the following expressions and express your answers with positive indices.
(a) $p^{-3} \times \sqrt[3]{-p}$
(b) $\left(\frac{p^{3}}{q^{6}}\right)^{\frac{4}{3}} \times p^{2}$
7. Solve the simultaneous equations $\left\{\begin{array}{l}y=x^{2}-5 x+7 \\ x-2 y+9=0\end{array}\right.$.
(4 marks)
8. Given that $\cos x=-\frac{5}{\sqrt{74}}$ and $\sin x>0$, find $\sin x$ and $\tan x$.
9. In the figure, $A C=14 \mathrm{~cm}, B C=12 \mathrm{~cm}, C D=10 \mathrm{~cm}, A D=11 \mathrm{~cm}$ and $\angle A C B=30^{\circ}$. Find the area of quadrilateral $A B C D$.

10. Simplify $1-\frac{\cos \left(90^{\circ}-\theta\right) \cos \left(180^{\circ}-\theta\right)}{\tan \left(360^{\circ}-\theta\right)}$.
(3 marks)

Part B: Advanced Questions (16 marks)

11. In the figure, the coordinates of point A are $(-2,3)$. A is rotated clockwise about the origin O through 90° to $B . B$ is then translated downwards by 5 units to C.

(a) Write down the coordinates of B and C.
(b) Find the equation of $A C$.
(c) D is a point on $A C$ such that $A C \perp B D$.
(i) Find the equation of $B D$.
(ii) Amy claimed that $B D$ is the perpendicular bisector of $A C$. Do you agree? Explain your answer.
12. Figure (1) shows a triangular cardboard $A B C . M$ is a point on $A B$ such that $C M \perp A B$. It is given that $A C=14 \mathrm{~cm}, B C=22 \mathrm{~cm}$ and $A B=24 \mathrm{~cm} . A M: M B=1: 3$.

Figure (1)
(a) Find the length of $C M$.
(b) The cardboard in Figure (1) is then folded along $C M$ such that $A M$ and $M B$ lie on the horizontal ground as shown in Figure (2). It is given that $\angle A M B$ in Figure (2) is 92°.

Figure (2)
(i) Find the length of $A B$.
(ii) Find the shortest distance between M and $A B$.
(iii) Find the angle between the planes $A B C$ and $A B M$.
(2 marks)

