SKH St. Simon's Lui Ming Choi Secondary School Form 4 Mathematics Tiered Assignment

Name:_____ Class:____ No.:____

Part A: Basic Questions (40 marks)

- Solve the following quadratic equations. (Leave your answers in surd form if necessary.) 1.
 - (a) $3x^2 x 5 = 0$

(b) x(x+3) = 2x

- If the quadratic equation $x^2 + 4x + k = 0$ has two equal real roots, find the value of k. 2. (3 marks)

3. It is given that $f(x) = \frac{3x}{x+2}$, where $x \neq -2$. Find the values of (a) f(1),

(2 marks)

(b) $f\left(-\frac{3}{2}\right)$.

(2 marks)

(2 marks)

56

Marks

(2 marks)

- 4. Let $f(x) = x^3 + 6x^2 x 30$.
 - (a) Show that x-2 is a factor of f(x).

(b) Hence, factorize f(x) completely.

(2 marks)

(2 marks)

5. Simplify the following expressions.

(a)
$$\frac{x^2 - 1}{x + 2} \times \frac{3x + 6}{x + 1}$$

(3 marks)

(b)
$$\frac{1}{x-5} + \frac{1}{x^2 - 3x - 10}$$

(3 marks)

6. Simplify the following expressions and express your answers with positive indices.

(a)
$$p^{-3} \times \sqrt[3]{-p}$$

(2 marks)

(b)
$$\left(\frac{p^3}{q^6}\right)^{\frac{4}{3}} \times p^2$$

(2 marks)

7. Solve the simultaneous equations
$$\begin{cases} y = x^2 - 5x + 7\\ x - 2y + 9 = 0 \end{cases}$$
.

(4 marks)

8. Given that $\cos x = -\frac{5}{\sqrt{74}}$ and $\sin x > 0$, find $\sin x$ and $\tan x$.

(4 marks)

10. Simplify $1 - \frac{\cos(90^\circ - \theta)\cos(180^\circ - \theta)}{\tan(360^\circ - \theta)}$.

(3 marks)

Part B: Advanced Questions (16 marks)

11. In the figure, the coordinates of point *A* are (-2, 3). *A* is rotated clockwise about the origin *O* through 90° to *B*. *B* is then translated downwards by 5 units to *C*.

- (a) Write down the coordinates of B and C.
- (**b**) Find the equation of *AC*.

- (c) D is a point on AC such that $AC \perp BD$.
 - (i) Find the equation of *BD*.

(ii) Amy claimed that *BD* is the perpendicular bisector of *AC*. Do you agree? Explain your answer.

(2 marks)

(2 marks)

(2 marks)

(2 marks)

12. Figure (1) shows a triangular cardboard *ABC*. *M* is a point on *AB* such that $CM \perp AB$. It is given that AC = 14 cm, BC = 22 cm and AB = 24 cm. AM : MB = 1 : 3.

(a) Find the length of *CM*.

(1 mark)

(b) The cardboard in Figure (1) is then folded along *CM* such that *AM* and *MB* lie on the horizontal ground as shown in Figure (2). It is given that $\angle AMB$ in Figure (2) is 92°.

Figure (2) (i) Find the length of *AB*.

(2 marks)

(ii) Find the shortest distance between *M* and *AB*.

(3 marks)

(iii) Find the angle between the planes ABC and ABM.

(2 marks)